Trade-offs between burst performance and maximal exertion capacity in a wild amphibian, Xenopus tropicalis.
نویسندگان
چکیده
Trade-offs are thought to impose barriers to phenotypic diversification and may limit the evolutionary responses of organisms to environmental changes. In particular, locomotor trade-offs between endurance or maximal exertion capacity and burst performance capacity have been observed in some species and may constrain the ability of organisms to disperse. Here, we tested for the presence of locomotor trade-offs between maximal exertion and burst performance capacity in an aquatic frog, the tropical clawed frog (Xenopus tropicalis). Given the importance of overland dispersal for this species, we focused on terrestrial exertion capacity (time and distance jumped until exhaustion) and tested whether it trades-off with aquatic burst performance capacity (maximum instantaneous velocity and acceleration), which is likely to be relevant in the context of predator escape and prey capture. Our data show that in both sexes, individuals with longer hindlimbs display higher endurance. Additionally, in females forelimb length was positively correlated with aquatic burst performance capacity and negatively correlated with terrestrial exertion. Trade-offs between endurance and burst performance capacity were detected, but were significant in males only. Finally, males and females differ in morphology and performance. Our data suggest that trade-offs are not universal and may be driven by sex-dependent selection on locomotor capacity. Moreover, our results suggest that locomotor trade-offs may result in sex-biased dispersal under selection for improved endurance capacity as is expected under habitat fragmentation scenarios.
منابع مشابه
Temperature dependence of locomotor performance in the tropical clawed frog, Xenopus tropicalis.
Amphibians are ideal taxa with which to investigate the effects of climate change on physiology, dispersal capacity and distributional ranges as their physiological performance and fitness is highly dependent on temperature. Moreover, amphibians are among the most endangered vertebrate taxa. Here we use the tropical clawed frog, Xenopus tropicalis, as a model system to explore effects of temper...
متن کاملJumping performance in the highly aquatic frog, Xenopus tropicalis: sex-specific relationships between morphology and performance
Frogs are characterized by a morphology that has been suggested to be related to their unique jumping specialization. Yet, the functional demands associated with jumping and swimming may not be that different as suggested by studies with semi-aquatic frogs. Here, we explore whether features previously identified as indicative of good burst swimming performance also predict jumping performance i...
متن کاملA gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis
In the rapidly developing, diploid amphibian Xenopus tropicalis, genetics can be married to the already powerful tools of the amphibian system to overcome a disability that has hampered Xenopus laevis as a model organism: the difficulties inherent in conducting genetic analyses in a tetraploid organism with a longer generation time. We describe here a gynogenetic screen to uncover naturally occ...
متن کاملPredation intensity does not cause microevolutionary change in maximum speed or aerobic capacity in trinidadian guppies (Poecilia reticulata Peters).
We measured maximal oxygen consumption (VO(2max)) and burst speed in populations of Trinidadian guppies (Poecilia reticulata) from contrasting high- and low-predation habitats but reared in "common garden" conditions. We tested two hypothesis: first, that predation, which causes rapid life-history evolution in guppies, also impacts locomotor physiology, and second, that trade-offs would occur b...
متن کاملWarmer is better: thermal sensitivity of both maximal and sustained power output in the iliotibialis muscle isolated from adult Xenopus tropicalis.
Environmental temperature varies temporally and spatially and may consequently affect organismal function in complex ways. Effects of temperature are often most pertinent on locomotor performance traits of ectothermic animals. Given the importance of locomotion to mobility and dispersion, variability in temperature may therefore affect the current and future distribution of species. Many previo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 215 Pt 17 شماره
صفحات -
تاریخ انتشار 2012